# DARE - radiation hardening by design

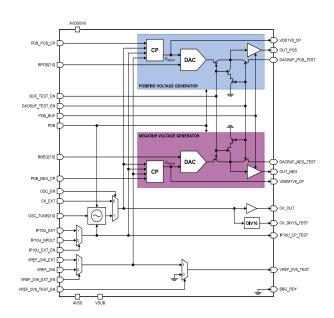
## **Product Overview**

DARE22G BBG implements a body bias voltage generator for radiation-hardened applications in the commercial GF 22 nm FDSOI CMOS technology.

In such technology, body biasing regulates transistor threshold voltages, directly impacting performance and power consumption. On-chip control of body bias voltages enables dynamic adjustment of transistor characteristics to modulate speed and power tradeoffs. Body bias voltage generators can also be integrated with variation monitors to create adaptative tuning mechanisms to compensate PVT variations, aging effects, and radiation-induced degradation during operation.

#### Features

DARE22G BBG main functionalities include:


- Dual voltage generation for N-well (0 V to 1.8 V) and P-well (-1.8 V to 0 V) biasing
- 8-bit output voltage selection granularity
- Coverage area up to 9 mm<sup>2</sup> (about 3M gates)
- Power-down mode (< 65 µA)
- Maximum current consumption below 2 mA
- TID immunity over 100 krad (SiO<sub>2</sub>)
- SET immunity over 60 MeV.cm<sup>2</sup>/mg
- SEL immunity over 70 MeV.cm<sup>2</sup>/mg

# **Block Diagram**

The BBG macro mainly consists of an oscillator and two voltage generators based on a common architecture. Each voltage generator employs a chargepump to produce a regulated reference voltage of either -1.8 V or 1.8 V, which is then scaled by an 8-bit R-2R DAC to provide a biasing signal with the correct output voltage level according to control inputs. Adjusted voltage signals are delivered to the output through analog buffers.

A 100 MHz clock signal is required by the chargepump circuits and can be either provided externally via the CK\_EXT input pin or generated internally by the built-in oscillator. This selection is controlled by the OSC\_EN input signal. In active mode (PDB = 1), the internally selected clock signal is buffered out via CK\_OUT pin to be used by other system blocks.

Internal cells also require a 10  $\mu$ A sinking current signal and a 0.6 V reference voltage signal which must be provided via dedicated inputs. Default current and voltage reference inputs are meant to be used for signals directly provided by an instance of the DARE22G IVREF18 IP when it is co-integrated in the chip. Additional external reference inputs and selection control signals are provided for reference signals provided off-chip.



# **Pin Interface**

| Pin Name        | Туре    | Description                                       |
|-----------------|---------|---------------------------------------------------|
| AVDD0V8         | Power   | Power supply                                      |
| AVSS            | Ground  | Ground supply                                     |
| VSUB            | Ground  | P-substrate bias<br>voltage                       |
| IP10U_EXT       | Analog  | External reference<br>current                     |
| IP10U_NPOLY     | Analog  | Reference current<br>from IVREF18 IP              |
| IP10U_CP_TEST   | Analog  | Mirrored internal<br>reference current            |
| VREF_0V6_TEST   | Analog  | Internal reference<br>voltage                     |
| VREF_0V6_EXT    | Analog  | External voltage reference                        |
| VREF_0V6        | Analog  | Voltage reference<br>from IVREF18 IP              |
| DACBUF_POS_TEST | Analog  | Testing pin for<br>positive voltage<br>generator  |
| DACBUF_NEG_TEST | Analog  | Testing pin for<br>negative voltage<br>generator  |
| VDD1V8_CP       | Analog  | Reference voltage<br>from positive charge<br>pump |
| VDDMIV8_CP      | Analog  | Reference voltage<br>from negative charge<br>pump |
| OUT_POS         | Analog  | Positive bias voltage<br>output                   |
| OUT_NEG         | Analog  | Negative bias voltage output                      |
| PDB             | Digital | Full power-down                                   |
| PDB_POS_CP      | Digital | Positive charge-<br>pump power-down               |
| PDB_NEG_CP      | Digital | Negative charge-<br>pump power-down               |
| PDB_BUF         | Digital | Buffers power-down                                |
| IP10U_EXT_EN    | Digital | External current reference selection              |

DARE22G Body Bias Generator Product Brief



| Pin Name T         | Гуре    |                                           |
|--------------------|---------|-------------------------------------------|
|                    | ype     | Description                               |
| VREF_0V6_EXT_EN D  | Digital | External voltage reference selection      |
| VREF_0V6_TEST_EN D | Digital | Internal reference<br>voltage test enable |
| OSC_EN D           | Digital | Internal oscillator<br>enable             |
| CK_EXT D           | Digital | External input clock                      |
| CK_OUT D           | Digital | Buffered output<br>clock                  |
| CK_DIV16_TEST D    | Digital | Output clock signal<br>for testing        |
| OSC_TUNE [3:0] D   | Digital | Oscillator tuning bits                    |
| DACBUF_TEST_EN D   | Digital | DAC/buffer test<br>mode enable            |
| BUF_TEST_EN D      | Digital | DAC/buffer test selection                 |
| BPOS[7:0] D        | Digital | Positive output level setting             |
| BNEG[7:0] D        | Digital | Negative output<br>level setting          |
| BBG_RDY D          | Digital | Ready flag                                |

### **Physical Dimensions**

DARE22G BBG is implemented as a core macro.

| IP Name | Width  | Height        |  |
|---------|--------|---------------|--|
| BBG     | 401 µm | <b>476</b> μm |  |

#### Contact

For further information, please contact us at <u>dare@imec.be</u>

### **Operating Conditions**

Performance and reliability are not guaranteed outside these recommended operating boundaries.

| Parameter               | Name               | Minimum | Typical | Maximum | Unit                     |
|-------------------------|--------------------|---------|---------|---------|--------------------------|
| Supply voltage          | $V_{VDD}$          | 0.72    | 0.8     | 0.88    | V                        |
| Input reference current | I <sub>PIOU</sub>  | 8       | 10      | 12.5    | μA                       |
| Input reference voltage | V <sub>BG0V6</sub> | 570     | 600     | 630     | V                        |
| Input frequency         | f <sub>ск</sub>    | 92      | 100     | 112     | MHz                      |
| Operating temperature   | Tj                 | -40     | 25      | 125     | °C                       |
| ESD rating (HBM)        | V <sub>HBM</sub>   | 2       |         |         | kV                       |
| TID immunity            | TID                | 100     |         |         | krad (SiO <sub>2</sub> ) |
| SET hardening           | $SET_{th}$         | 60      |         |         | MeV.cm <sup>2</sup> /mg  |
| SEL hardening           | $SEL_{th}$         | 70      |         |         | MeV.cm <sup>2</sup> /mg  |