DARE - radiation hardening by design

Product Overview

DARE22G IVREF18 implements a bandgap-based reference voltage and current generator for radiationhardened applications in the commercial GF 22 nm FDSOI CMOS technology.

This IP supports a range of DARE22G platform IP blocks that require on-chip current and/or voltage biasing, such as LVDS, BBG, and OSC100M.

Features

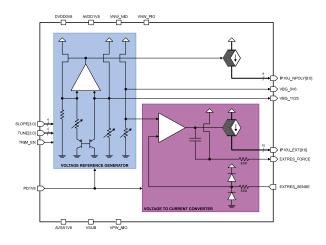
DARE22G IVREF18 main functionalities include:

- 0.6 V and 1.25 V (±1%) reference voltages
- 10 high-precision 10 µA sinking current sources
- 9 internal biasing current sources for extra reference voltage generation
- Excellent stability over supply voltage, load variation and temperature
- Low operating current (< 420 μA)
- Digital calibration
- Power-down mode (< I µA)
- TID immunity over 100 krad (SiO₂)
- SET immunity over 60 MeV.cm²/mg
- SEL immunity over 70 MeV.cm²/mg

Block Diagram

The IVREF18 macro comprises a bandgap circuit, current mirrors, and a voltage-to-current converter. The bandgap circuit generates 0.6 V and 1.25 V reference voltage signals. Digital calibration for voltage offset and temperature drift can be performed using trimming codes provided via TUNE[3:0] and SLOPE[3:0] input buses. Calibration is enabled when the TRIM_EN input is set to logical I upon start-up.

The internally generated reference voltage signals are used by the voltage-to-current converter to produce the high-precision 10 μ A current sources, which are output via the IP10U_EXT[9:0] bus. This conversion requires an external accurate pull-down resistor connected to both EXTRES_FORCE and EXTRES_SENSE pins.


In contrast, internal biasing current sources offer a fully integrated alternative that is more sensitive to PVT variations, where no external components are required. These current sources replicate the internal bandgap biasing current to generate a coarse 10 μ A internal biasing current sources delivered via the IP10U NPOLY[8:0] bus.

The internal biasing current sources can also be used to generate up to nine replicas of the reference voltage when connected to dedicated NPOLY resistors.

I.8 V Current & Voltage Reference

Product Brief

DARE22G

Pin Interface

Pin Name	Туре	Description		
AVDDIV8	Power	Analog power supply		
DVDD0V8	Power	Digital power supply		
AVSSIV8	Ground	Ground supply		
VSUB	Ground	P-substrate bias voltage		
VNW_PIO	Power	Back-bias voltage for reversed-biased NMOS		
VNW_NIO	Power	Back-bias voltage for forward-biased NMOS		
VPW_NIO	Ground	Back-bias voltage for reversed-biased PMOS		
VBG_0V6	Analog	0.6 V reference voltage		
VBG_IV25	Analog	1.25 V reference		
	-	voltage		
IP10U_NPOLY[8:0]	Analog	10 μA internal biasing		
		current sources		
IP10U_EXT[9:0]	Analog	10 μA high-precision current sources		
EXTRES_FORCE	Analog	External 12 k Ω resistor low-ohmic connection		
EXTRES_SENSE	Analog	External 12 k Ω resistor sensing connection		
PD1V8	Digital	Power-down enable		
TUNE[3:0]	Digital	Reference voltage's		
	-	offset trimming bits		
SLOPE[3:0]	Digital	Reference voltage's		
		temperature slope		
		trimming bits		
TRIM_EN	Digital	Trimming enable		

Physical Dimensions

DARE22G IVREF18 is implemented as a core macro.

IP Name	Width	Height
IVREF18	526 µm	220 µm

Contact

For further information, please contact us at <u>dare@imec.be</u>

Operating Conditions

Performance and reliability are not guaranteed outside these recommended operating boundaries.

Parameter	Name	Minimum	Typical	Maximum	Unit
Digital supply voltage	V _{DD0V8}	0.72	0.8	0.88	V
Analog supply voltage	V _{DDIV8}	1.62	1.8	1.98	V
Operating temperature	TI	-40	25	125	°C
ESD rating (HBM)	V _{HBM}	2			kV
TID immunity	TID	100			krad (SiO ₂)
SET hardening	SET_{th}	60			MeV.cm ² /mg
SEL hardening	SEL _{th}	70			MeV.cm ² /mg