DARE - radiation hardening by design

Product Overview

DARE22G LVDS library provides transmitter and receiver I/O cells for the implementation of radiationhardened high-speed low-voltage differential signaling interfaces in the commercial GF 22 nm FDSOI CMOS process.

DARE22G LVDS cells are intended for I/O rings implemented with the DARE22G I/O library which provides compatible supply and breaker cells required to define isolated LVDS I/O domains.

DARE22G exploits the intrinsic SEL immunity provided by the FDSOI technology in combination with special radiation-hardening-by-design (RHBD) techniques to mitigate TID and single-event effects in I/O rings.

DARE22G LVDS interfaces are fully compliant with the TIA/EIA-644-A standard and can achieve data signaling rates up to I Gbit/s. Special capabilities for space applications are built in LVDS cells, including onchip hysteresis, cold-spare functionality, and radiationhardened fail-safe detection.

Features

DARE22G LVDS library features include:

- 1.8 V I/O supply domain cells
- Pad-limited fixed-height narrow layout
- Distributed power-on control
- Horizontal or vertical placement orientation
- Inline and staggered pad arrangement supported
- 2 kV ESD protection (HBM)
- SET immunity over 60 MeV.cm²/mg
- SEL immunity over 70 MeV.cm²/mg
- TID immunity over 100 krad (SiO₂)

LVDS Transmitter

DARE22G LVDS transmitter cell (LVDS_TX) converts a singled-ended digital core signal into a low-voltage differential output signal centered on a common-mode voltage provided from the core design.

Cell Features

LVDS_TX main functionalities include:

- High-impedance output mode to enable multipoint configurations with multiple transmitters
- Power-down mode (< 85 μA)
- Disabled data outputs during power ramping
- Variable common-mode voltage
- Flexible reference biasing
- Cold-spare compliant outputs
- Max current consumption of 5.8 mA at I Gbps

The output common-mode voltage is generated from a $1.25 \text{ V} (\pm 5\%)$ voltage reference which must be provided via a core side input pin.

DARE22G

LVDS Library

Product Brief

LVDS_TX is not self-biased and requires a reference signal to be provided via core pins to bias internal current mirrors. This biasing can be implemented using either current or voltage signals. In current mode, a 10 μ A sinking current signal must be provided. Transmitter cells biased in this way will generate a voltage reference signal that can be redistributed to bias additional transmitter cells in voltage mode. This flexibility allows for reduced power requirements.

LVDS_TX is designed to achieve maximum performance with a 100 Ω termination resistor load, following the reference specification by the TIA/EIA-644-A industry standard.

Block Diagram

Pin Interface

Pin Name	Туре	Description
VDDIO	Power	I/O power supply
VSSIO	Ground	I/O ground supply
VDDC	Power	Core power supply
VSSC	Ground	Core ground supply
IP10U	Analog	Single-cell bias current
VBIAS_N	Analog	Shared bias voltage
VREF	Analog	Common-mode reference
IOPWROK	Digital	I/O supply voltage flag
PWROK	Digital	Core supply voltage flag
RETC	Digital	Active-low retention enable
BIAS	Digital	Level-shifter bias voltage
IBIAS_SEL	Digital	Current biasing selection
PDB	Digital	Power-down enable
DIN	Digital	Single-ended input data
HIGH_Z	Digital	Tri-state output enable
OUTP	LVDS	Differential output data
OUTN		

LVDS Receiver

DARE22G LVDS receiver cell (LVDS_RX) converts an external variable common-mode LVDS signal into a single-ended digital core output signal.

່ເກາec

Cell Features

LVDS_RX main functionalities include:

- Active fail-safe detection
- Power-down mode (< 10 µA)
- Pulled down data output during power ramping
- Flexible reference biasing
- Cold-spare compliant inputs
- SET immunity over 60 MeV.cm²/mg
- Max current consumption of 3.2 mA at I Gbps

LVDS_RX is not self-biased and requires a reference signal to be provided via core pins to bias internal current mirrors. This biasing can be implemented using either current or voltage signals. In current mode, a 10 μ A sinking current signal must be provided. Receiver cells biased in this way will generate a voltage reference signal that can be redistributed to bias additional receiver cells in voltage mode. This flexibility allows for reduced power requirements.

Integrated fail-safe detection can be enabled to flag multiple invalid input conditions, such as open circuit, short circuit, or high impedance. Upon failure detection, the fail-safe flag output to the core is pulled up while data output remains unaffected.

Block Diagram

Pin Interface

Pin Name	Туре	Description		
VDDIO	Power	I/O power supply		
VSSIO	Ground	I/O ground supply		
VDDC	Power	Core power supply		
VSSC	Ground	Core ground supply		
IPI 0U	Analog	Single-cell bias current		
VBIAS_N	Analog	Shared bias voltage		
VREF	Analog	Common-mode reference		
IOPWROK	Digital	I/O supply voltage flag		
PWROK	Digital	Core supply voltage flag		
RETC	Digital	Active-low retention enable		
BIAS	Digital	Level-shifter bias voltage		
IBIAS_SEL	Digital	Current biasing selection		
PDB	Digital	Power-down enable		
ENA_FS	Digital	Fail-safe enable		
FS	Digital	Fail-safe detection flag		
Z	Digital	Single-ended output data		
INP	LVDS	Differential input data		
INN				

Physical Dimensions

DARE22G LVDS cells are implemented in the same pad-limited fixed-height narrow layout template defined by the DARE22G I/O library.

Cell Name	Width	Height
LVDS_RX	203 µm	89 µm
LVDS_TX	185 µm	89 µm

Contact

For further information, please contact us at <u>dare@imec.be</u>

Operating Conditions

Performance and reliability are not guaranteed outside these recommended operating boundaries.

Parameter	Name	Minimum	Typical	Maximum	Unit
Core supply voltage	V_{DD0V8}	0.72	0.8	0.88	V
I/O supply voltage	V _{DDIV8}	1.62	1.8	1.98	V
Core input voltage	V _{CORE}	-0.3		0.88	V
Pad input voltage	VPAD	0		2.4	V
Reference voltage	V_{REF}		1.25		V
Bias current	IP10U	9	10	11	μA
Operating temperature	Tj	-40	25	125	°C
ESD rating (HBM)	V _{HBM}	2			kV
TID immunity	TID	100			Krad (SiO ₂)
SET hardening	SET _{th}	60			MeV.cm ² /mg
SEL hardening	SEL _{th}	70			MeV.cm ² /mg